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Linear Parameter-Varying Antiwindup Compensation
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Actuator saturation is one of the major issues of flight control in the high-angle-of-attack region. A saturation
control scheme for linear parameter-varying (LPV) systems from an antiwindup control perspective is presented.
The proposed control approach is advantageous from the implementation standpoint because it can be thought of as
an augmented control algorithm to the existing control system. Moreover, the synthesis condition for an antiwindup
compensator is formulated as a linear matrix inequality optimization problem and can be solved efficiently. We
have applied the LPV antiwindup controller to an F-16 longitudinal autopilot control system design and compared
it with the thrust vectoring control scheme. The nonlinear simulations show that an LPV antiwindup controller
improves flight quality and offers advantages over thrust vectoring in a high-angle-of-attack region.

1. Introduction

HE flight control system of a tactical aircraft has different

performance goals for low-angle-of-attack and high-angle-of-
attack regions. For example, pilots desire fast and accurate responses
for maneuver and attitude tracking in a low-angle-of-attack scenario.
While in a high-angle-of-attack region, the flight control focuses
on the maintainability of aircraft stability with acceptable flying
qualities. The potential of high-angle-of-attack flight presents many
challenges to the control designers. Because of aerodynamic surface
saturation and control surface limitation, unconventional actuators
such as thrust vectoring are suggested for aircraft maneuvering at
and beyond the stall angle of attack. However, incorporation of ad-
ditional thrust vectoring hardware could complicate the design of
flight control laws in the poststall regime.! Robust multivariable
control methods have been recently applied to a variety of aircraft
models? to demonstrate their abilities to fly at high angles of attack
with the help of thrust vectoring control (see Ref. 3 and references
therein). Besides control law design, another major issue of high-
angle-of-attack flight is control saturation. It is well recognized that
actuator saturation degrades the performance of the flight control
system and can even lead to instability. The destabilizing effects of
actuator saturation have been cited as contributing factors in several
mishaps involving high-performance aircraft.* For this reason, vari-
ous methods of preventing instability caused by saturation have been
examined, which include allocating control effectors and command
scaling and prioritization.

The antiwindup method is a popular approach to control satura-
tion that employs a two-step design procedure. The main idea of
antiwindup control is to design the linear controller by ignoring the
saturation nonlinearities first and then add antiwindup compensation
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to minimize adverse effects of the saturation on closed-loop perfor-
mance. Desirable design requirements for antiwindup compensation
subject to actuator saturation are the closed-loop system stability,
recovery of the linear design specifications in the absence of satura-
tion (linear performance recovery), and the smooth degradation of
the linear performance in the presence of saturation (graceful per-
formance degradation). Like other saturation control techniques,
the antiwindup compensator design often assumes a linear time-
invariant (LTI) plant and models the saturation block as a sector-
bounded nonlinearity. Then absolute stability conditions (such as
Popov, circle theorems) are applied for the stability and perfor-
mance analysis.’ Their extension to nonlinear systems has already
been developed.

A general framework that unifies a large class of existing anti-
windup control schemes in terms of two matrix parameters was
proposed in Ref. 6. This framework is useful for understanding
different antiwindup control schemes and motivates the develop-
ment of systematic procedures for designing antiwindup controllers
that provide guaranteed stability and performance. Early results in
antiwindup control often have the drawback of lacking rigorous
stability analysis and clear exposition of performance objectives.
Using an extended circle criterion, the synthesis condition of static
antiwindup controllers is formulated as a linear matrix inequality
(LMI) problem.” A recent study in Ref. 8 has further revealed that
antiwindup control for stable open-loop LTI systems can be solved
globally as an LMI problem with the order of antiwindup compen-
sator no more than the plant’s order. Alternatively, the Popov stabil-
ity condition has also been applied to the antiwindup compensator
design problem.’ However, the synthesis condition of the saturation
controller is given in coupled Riccati equations, which are difficult
to solve for the optimal solution. Most previous antiwindup compen-
sator designs are only applicable to open-loop stable LTI systems,
limiting their usefulness for practical problems. When the system is
nonlinear and open-loop unstable, the control synthesis problem be-
comes very difficult to solve; therefore, global stabilization cannot
be achieved.'®!! However, in many control systems including flight
control systems, the system dynamics are inherently nonlinear and
their linearizations at some operation points are strictly unstable.

The motivation for this research is twofold. First, the antiwindup
control scheme for LTI plants in Ref. 12 is generalized to lin-
ear parameter-varying (LPV) systems. This generalization is very
important because of the relevance of LPV systems to nonlinear
systems. In fact, the LPV model can be thought of as a group of
local descriptions of nonlinear dynamics. The antiwindup compen-
sation augments existing control systems by maintaining stability
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and recovering control performance when actuators become satu-
rated. Second, saturation control for aircraft under large maneuver
operations is critical because of safety concerns. The proposed an-
tiwindup compensation can augment existing flight control algo-
rithms, yielding enhanced reliability and an expanded flight enve-
lope. In particular, using an F-16 longitudinal dynamic model, we
demonstrate good flight control performance of LPV antiwindup
control in a high-angle-of-attack scenario. Note that the study in
this paper is focused on actuator magnitude saturations, and it is the
first, but an important step towards the actual application of anti-
windup to high-performance flight control. The results can be easily
generalized to actuator rate saturations,'® which are more realistic
for an advanced tactical aircraft.

The notation in this paper is standard. R stands for the set of
real numbers and R, for the nonnegative real numbers. R"*"
is the set of real m x n matrices. The transpose of a real ma-
trix M is denoted by MT. Ker(M) is used to denote the orthog-
onal complement of M. A block diagonal matrix with submatrices
X1, X5, ..., X, inits diagonal is denoted by diag {X |, X», ..., X, }.
We use S " to denote the real symmetric n x n matrices and
S§"*" to denote positive definite matrices. If M € §"*", then M >0
(M > 0) indicate that M is positive definite (positive semidefinite)
and M < 0(M <0) denotes a negative definite (negative semidef-
inite) matrix. If a, b € R, then sect[a, b] denotes the conic sector
defined by {(¢, p) : (p —aq)(p —bq) <0}. Forx € R", its norm is
defined as ||x|| := (x7 x)!/2. The space of square integrable functions
is denoted by £,, that is, for any u € £,,

llull2 = |:/ u” (Hu(t) dtj|
0
is finite.

This paper is organized as follows: Section II is devoted to provid-
ing an LPV antiwindup compensator synthesis condition, which is
a generalization of previous results in Ref. 12. In Sec. III, the LPV
antiwindup compensator is applied to an F-16 longitudinal flight
control system design and is compared with the thrust vectoring
control scheme. Finally, we conclude the paper in Sec. IV.

o=

II. LPV Antiwindup Control Synthesis

The goal of antiwindup compensation is to modify nominal con-
trollers so that if the signal from the controller is different from that
which enters the plant, corrective feedback action is employed to
reduce the discrepancy. Because it is impossible to provide a global
stabilizing solution to the antiwindup control problem when the
open-loop plant is unstable, one often needs to determine regional
stability for saturation control and to design the controller gains
in the guaranteed stability region.!®!" In Ref. 8, a sector-bounded
input nonlinearity, sect[0, 1], was considered for the open-loop sta-
ble plant and is not applicable to exponentially unstable systems.
However, the derived performance and stability properties can be
improved when the input nonlinearity is restricted to a smaller sec-
tor region. As a result, this modification leads to regional stability
of the antiwindup compensated system and extends the antiwindup
control technique to exponentially unstable open-loop systems.

Consider an LPV plant P, described by

X]; Ap(p) Bpl(lo) BpZ(p) Xp
e | =|[Cpnlp) Dpulp) Dpia(p) d (D
y Cpa(p) Dpi(p) Dpna(p) | o)

where the plant state x, € R"7. y € R" is the measurement for con-
trol, and o (u) € R"* is the saturated control input. ¢ € R" is the con-
trolled output, and d € R" is the disturbance input. It is assumed
that the vector-valued parameter p evolves continuously over time
and its range is limited to a compact subset P C R°. In addition,
its time derivative is assumed to be bounded and satisfy the con-
straint v; < p; <Vv;,i=1,2, ..., s. For notational purposes, denote
V={v:py <y <v,i=12,...,s}, where V is a given convex
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a) LPV antiwindup control structure

b) Equivalent transformation

Fig. 1 Nonlinear saturation control diagram.

polytope in R* that contains the origin. Given the sets P and V, the
parameter v-variation set is defined as

Fp={peC (Re.R):p(t) e P, p(t) € V.Vt = 0}

So F7, specifies the set of all allowable parameter trajectories.

All matrix valued state-space data are continuous and have ap-
propriate dimensions. For simplicity, we assume the following:

(A1) [A,(p), Bpa(p), Cpa(p)] triple is parameter-dependent sta-
bilizable and detectable for all p.

(A2) The matrices [B[f2 (p) D;lz (p)]and [C2(p) Dp2i(p)]have
full row rank.

(A3) Dyn(p) =0.

The actuator nonlinearity under consideration is a piecewise-
linear saturation

Ui, lu;] < u™
a(u’) = max max
sgn(u; )u;™, lui| > u;
fori=1,2,...,n,. The antiwindup control structure is shown in

Fig. la.

Following the standard antiwindup procedure, a nominal LPV
controller K, is designed first by ignoring the input nonlinearity.
Different control design techniques can be employed to achieve this
goal. A systematic way to do this is through LPV control theory.!4~!
Because of assumption (A1), the nominal controller K, exists and
is capable of stabilizing the open-loop system when no input satura-
tion exists, and its design will determine the nominal performance
of the closed-loop LPV system. We assume that such a controller is

given by
Xi _ Ar(p, ) Bi(p) | | Xk T vy @)
u Ci(p) De(p)] [y U2
where x; € R". The variables v, v, are the auxiliary inputs pro-
vided by an antiwindup compensator. They are used to condition
the nominal controller when the control input is saturated.
Our objective is to design an LPV antiwindup compensator AW,

such that the adverse effect of input saturations are minimized in
terms of induced £, norm. The antiwindup compensator is in the

form of

-).Caw A

T] — I:Aaw(pv Io) Bdw(p)} [XHW} (3)
.. Caw(p, p) de(p) q

where the state x,,, € R"*; the size of the compensator state will be
determined in the sequel. Such antiwindup compensation schemes
provide a computationally efficient technique for “retro-fitting”
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@ slope 0 < k; <1
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Fig. 2 Restricted range input saturation.

existing unconstrained controller K, to account for input nonlin-
earities, thereby eliminating controller windup problems for input
saturated nonlinear systems.

The LPV antiwindup control diagram in Fig. la can be trans-
formed to its equivalent form by substituting each actuator satura-
tion with a deadband nonlinearity A; =1 — o (#;)/u; and A = diag
{A1, Ay, ..., A, } as shown in Fig. 1b. This allows recasting of the
compensator design problem into a robust LPV control paradigm.

It can be seen that the deadband uncertainty A; resides in the
conic sector [0, 1]. If the maximal value of the control input signal
u; is restricted to be less than (1/(1 — k;))u"™ with 0 < k; < 1, then
the nonlinearity A; is reduced to sect[0, ;] as shown in Fig. 2. Con-
sequently, we have A esect[0, K] with K =diag{k;, k, ..., k,,}.
The resulting stability notion then becomes regional stability, which
is more conservative than the actual stability limit. However, this
restriction of uncertainty A is capable of extending the antiwindup
scheme to open-loop exponentially unstable systems.

Let the system G, be the interconnection of the open-loop sys-
tem P, and the nominal controller K ,, but exclude the antiwindup
compensator. Then its dynamic equation is

B, + BpaDi Dy 0 Bp
B _ | P P p B _ p
1(p) [ BeDyon } , 2(p) [[ 0

Co(p) =[DiCpy  Cyl, Ci(p)=I[Cp1 +Dp12DCpy  Dp12Cy]

Dy (p) =0,

Dio(p) = _Dp121

Do1(p) = DkDpZIa Dy (p) =1[0 1]

Dy (p) = Dy + Dpi2Di Doy

Di(p) =[0 Dyl

Note that the state-space data have linear dependency of parameter
rate p under the LPV control design framework.

Denote x%=[xT xI]. Then the final closed-loop system
T,=F(G,, AW,) is described by

Xel Aa(p,p)  Boa(p) Bia(p) Xel
u [ =|Coalp,0) Dooca(p) Doic(p) q (6)
e Cra(p, ) Dia(p) Dira(p) d

q=Au (7

where F, (-, -) stands for a lower linear fractional transformation.'”
The state-space data of the closed-loop system T, are related to the
interconnected system G, and the antiwindup compensator AW ,,.
Specifically, the closed-loop state-space data depend on the anti-
windup compensator gain in affine form. The following theorem
provides a synthesis condition for the antiwindup compensator.

: ; X Theorem 1 (synthesis condition for LPV antiwindup compen-
x A(p,p)  Bo(p) Bi(p) Ba(p) Yy p p
C,O P DO P DI P DZ P q sator): Given scalars 0 <k; <1,i=1,2,...,n,, the LPV open-
u o(p) () Dor(p)  Doa(p) il @ loop system P, with a parameter-dependent stabilizing nominal
e Ci(p)  Du(p) Dulp) Dilp) | |- controller K ,, if there exists a pair of positive definite matrix func-
q 0 I 0 0 ! tions Ry (o) €S"’ " S(p) € S’,*" and a diagonal matrix function
v2 V(p) =diag{vi(p), - - -, vy, (0)} > O satisfying
i T —~  0Ry T i
Ru(p)AL(0) + Ap(0)R11(0) = Y _pi Ru(p)C}(p)
—~"" p; +2Bp(p)K~'V(p)d — K HD!,(p) Fn(0)
2(p p)U — p
+2B,0(p)K 'V (p)(I — K1) BT, (p) ' i
<0 (8)
{ Cri(P)R11(p) } {_Vln(, } Do)
nlp
+2D,12(p)K 'V (p)I — K~ B, (p) +2D,12(p)K 'V (p)(I — K~H)D],,(p) !
L By, (p) DI, (p) vy |
. o — . 3S T
SOIAW. )+ AT (0. PSP+ ) pig S@IBIR) CT(p)
l <0 )
B[ (p)S(p) vl Dii(p)
Ci(p) Dy (p) —y 1,
Rui(p) [ln,; 0]
I, >0 (10)
P S
[ 0 } (o)
q = Au (®))] for all (p, p) € P x V, then there exists an n,th order LPV anti-

where x” = [xIT, xI'leR" withn=n, +n; and A € sect[0, K.

) Ap+ BpDiCpy  BjpCy —B
A _ |4 p p / B _ p
(0, p) [ BiCyr A |’ o(p) 0

windup compensator AW, to stabilize the closed-loop system expo-
nentially and have the performance [e|> <y ||d|» for all p(-) € F,
when the condition |u;| < (1/(1 — k;))u™,i=1,2,...,n, holds.

The proof can be found in the Appendix. Because only the (1, 1)
element of the R matrix function is constrained in the LMIs (8-10),
it is always possible to augment matrix R;; to R in satisfying the
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preceding coupling condition. For example, one can choose

0
[ 01S~'(p) [1}

1 0
[0 1157'(p) [0]‘[0 I]Sl(p)[li|

The resulting R is positive definite because of condition (10). Also,
R(p) — S~ '(p) = 0 is satisfied for the selected R matrix function.
The rank condition is trivially satisfied if one chooses n,, =n,,.

Recall that the LPV antiwindup compensator synthesis problem
is originally formulated as a robust control problem. This usually
leads to a nonconvex solvability condition as bilinear matrix in-
equalities. However, because of the special structure of the anti-
windup controller, the resulting synthesis condition is convex in
terms of matrix variables R;(p), S(p), and V (p). In fact, the solv-
ability condition for the LPV antiwindup compensator is given as
an infinite-dimensional LMI optimization problem, for which an ef-
ficient numerical algorithm exists to solve it approximately.'® This
can be done by parameterizing the matrix variables using a finite set
of scalar basis functions as

Ri1(p)

R =

N}Z
S() = ;S

j=1

Ny
Rii(p) = Zfi(p)Rll,h

i=1
Nj,

Vip) = h(p)Vi

k=1

A . . dS . dN )
Aw(p,p)=—p —R(p)H — p—M" (p)H — A" (p, p)H —
dp dp
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2) Compute_the least-square solutions of the following linear
equations for By (p) € R"*", Cop(p) € R™ "7

0|l 0 0
L, BI.(p)
0 —T(p) ?
0
B Onuxn
| BE@)S() + W (p)KCo(p)
Bl (0)S(p)
L Ci(p)
0 |KW(p) 0  DI,(p)
W (p)K [éaw(p)}
0 —T(p) ?
D,12(p)
i 81{2(,0)
| (BE@) + WK Co(p)R(0))H + D}, (0) B}, (p)
Bl (p)H
i Ci(p)R(p)H

where ? means “we don’t care,” and the matrix A,y (p, p) € R"*"»
is expressed as

[S(P)Bo(p) + Buw(p) + Ci (DKW (p)  S(p)Bi(p) CT ()] (p)

[B5 (0) + W (p)K Co(p)R(p)|H + D, (0)BL,(p) + W (p)K Can(p)

Bl (0)H
Ci(P)R(PYH + D12 (0)Can(p)

where {£;(0)},,, (g;(0)}}%,. and {h;(p)} ", are user-specified

scalar basis functions. Ry, ;, S;, and V are new optimization vari-
ables to be determined. After such a parameterization, the LPV
synthesis conditions can be solved using a gridding method over
the parameter space.

After solving Ry1(p), S(p), and V (p) matrix functions, the LPV
antiwindup compensator gain can be determined by either solving an
LMI feasibility problem or the antiwindup compensator can be con-
structed explicitly as shown in the following theorem. The explicit
construction approach is advantageous because it avoids possible
numerical ill-conditioning when solving the preceding feasibility
LMI problem. Moreover, it connects the antiwindup controller di-
rectly to the plant and nominal controller gains.

Theorem 2 (LPV antiwindup compensator construction): Given
the solutions R;;(p), S(p), y, and V (p) =W ~!(p) of the LMIs
(8-10), let M(p)NT (p) =1, — R(p)S(p) with M, N € §"*"» and
H" =1, , 01, then one n,th order LPV antiwindup compensator
AW, can be constructed through the following scheme:

1) Compute a feasible D, (p) € R"™ *" such that

M(p) =
—W (p)K Day(p) — DL, (0)KW (p) +2W (p) * *
—DgI(P)KW(P) y[nd *
~[D19(p) + D p12(0) Du (p)] ~Dii(p) vyl
>0

forall p € P, where * in the upper triangle means I1(p) is symmetric.

3) Convert the transformed antiwindup compensator gain to its
original state-space data by

I:Aaw(p, ) Baw(p)i| B [Nm) S(P)Bz(P)i|l
Calp.p) Duw(p)| | 0 [0 1]
X([Aaw(p,p) éawm)]_[S(p)A(p,p)R(p)H 0 ])
CA‘aw (,0) DAaw(p) 0 Onu X ny
[MT(p)H 0}1
X
0 I,,

This proof can be found in the Appendix. The explicit antiwindup
construction scheme can also be applied to open-loop stable systems.
However, because the synthesis condition for an open-loop stable
plant does not involve W (Ref. 8), we need to solve both the feasible
D,y and W matrix functions at the first step. The remaining steps
are the same by setting K =1.

III. Saturation Control for Flight Dynamics

In this section, the proposed LPV antiwindup control synthesis
technique is applied to flight dynamics. The system to be controlled
is the longitudinal F-16 aircraft model based on NASA Langley
Research Center (LaRC) wind-tunnel tests,'® which is described by
Stevens and Lewis in great detail

A. Aircraft Model
The full nonlinear longitudinal model of an F-16 aircraft is given
as follows:
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V= 2q [Cry (@) cOS &t + C.y (o) sinalq — g sin(d — o)
qS . cos o
+ —[Ci(a,8,)cosax + C.(cx, 8.) sina] + T —— (11)
m m
1+ 95 (0. @) cosa — C,y (@) sina] bg + 5 cos@ — )
2mv2- "’ 1%
qSs ) sin o
+ —[Cz(a,$,)cosax — C (0, 8,)sina] — T (12)
mV mV
. qSc
q= TG ——[cCpq(a) + AC 4 (a)]q
qSc
+I—C(oz8)+ C(a8) (13)
y
=¢q (14)

The aerodynamic coefficients are provided as look-up tables from
LaRC wind-tunnel tests on a scale model of F-16 aircraft. The data
apply to the speed range up to about Mach 0.6 and cover a very
wide range of angle of attack (—20 deg <« <90 deg). However,
conventional aerodynamic math models for use in aircraft simula-
tion or flight control design have become increasingly deficient in
the poststall region.?’ So, the investigation on the robust control of
aircraft in the high-angle-of-attack region with uncertain aerody-
namic coefficients is one of the challenging research topics.

The F-16is powered by an afterburning turbofan jet engine, which
produces a thrust force in the x axis. The LaRC data include a model
of the engine in which the thrust response is modeled with a first-
order lag; the lag time constant is a function of the actual engine
power level and the commanded power. The throttle position is
related to the commanded power level. For convenience, the actual
power level is also considered as a state variable in longitudinal
dynamics.

The state and input variables of the F-16 model are defined as
follows:

\% true airspeed, ft/s

o angle of attack, rad
x=149q pitch rate, rad/s

0 pitch angle, rad

pow actual power level (0-100)

By slight abuse of notations, the variables just listed also repre-
sent perturbations from their equilibrium states when linearization
is considered. In addition, V, ¢, and flight-path angle y (deg) are se-
lected as outputs. To describe the nonlinear F-16 model by an LPV
system, we first need to find the wings-level equilibrium solutions
at several flight conditions in the design envelope. The local linear
models are then obtained by linearizing the nonlinear equations of
motion at those equilibrium points. The flight envelope of interest
covers aircraft speeds between 160 and 200 ft/s and angles of attack
between 20 and 45 deg. These two variables are used as scheduling
parameters in the LPV modeling of F-16 longitudinal dynamics.
The points at which the nonlinear model is linearized are marked
by a x symbol in Fig. 3. This group of linearized models consist of
the LPV representation of the nonlinear F-16 longitudinal dynam-
ics within the chosen flight envelope. The corresponding dynamic
pressure range is between 20 and 50 1b/ft>. This portion of flight en-
velope is chosen because the moderately high angle of attack and the
low dynamic pressure cause aecrodynamic control surface saturation,
which is a major concern in this research. The actuators are explic-
itly constrained. Most of the time, we found that the elevator angle
saturation becomes a limiting factor for flight control effectiveness.

|
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Fig. 3 Flight trim points.

B. Problem Setup

The design objective of the nominal LPV controller in this re-
search is to track the flight-path angle command with the tracking
error about 1.25% of the command in the steady-state motion. This
kind of problem is conveniently formulated as a model-following
problem,?!?> where the ideal model to be followed is chosen to be
a second-order filter based on desired flying qualities:

2
Videal _ Digeal
T2
8% + 28ideal * Wideal * 5 + wldeal

15)
Vemd

The implicit model-following framework allows for direct incor-
poration of flying quality specifications into the control design. A
block diagram of the system interconnection for synthesizing the
nominal controller is shown in Fig. 4, where P, is the model set of
linearized aircraft dynamics at different operating points p and # is
three-dimensional sensor noise.

The weighting functions are chosen as

8n throttle position (0-1)
8. elevator angle, deg (—25 deg — 25 deg)

80(s/5 + 1) .
_ 6+ D W, = diag{0.8, 0.6, 0.1
P 5/0.05 + 1 iag{ }
1 2.25
= diag} 1, 10, — Wieea = 57— 7-"755%
50 120 S+ 245 1225

The throttle and elevator actuator dynamics are modeled as first-
order lag filters:

8in /85 =5/(s +5), 8. /85 =20/(s +20)
Both the positions and the rates of control inputs are fed into W, to

penalize the control effort. Therefore, the system matrix of Wy is
derived as follows:

—515 —20/20
W = diag 1(0], 110 (16)
—515 —20/20
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C. Design Results

The nominal controller is designed by formulating an LPV
synthesis problem, which can be solved using either a single or
parameter-dependent quadratic Lyapunov function over all gridding
points in the two-dimensional parameter space.'*!” In this work, the
single quadratic Lyapunov function (SQLF) approach is chosen to
reduce the computation time in the nominal LPV control synthesis
phase. The performance obtained through the SQLF approach is
Vnom = 8.0.

The proposed LPV antiwindup scheme is then applied to the con-
trol of an F-16 aircraft, and we also choose the SQLF approach
to perform the LPV antiwindup synthesis. A series of LPV anti-
windup compensators AW, are designed by gradually decreasing

tion for LPV antiwindup control is infeasible for k; = 1. Compared
with the nominal performance, the worst performance level when
ki = 1—107 indicates the strong adverse effect of saturation non-
linearity. On the other hand, the antiwindup compensator almost re-
covers the nominal closed-loop performance Yo, When k; =0.99.
The antiwindup compensator corresponding to k; =0.999 will be
used in the following nonlinear simulations. The achieved perfor-
mance by this LPV antiwindup compensator is 25.5 compared to the

Table 1 H performance level vs sector range [0, k;]

Sector range [0, ;] ‘H o performance y

-5
the k; (i =1, 2) value from 1 to 0.99. Table 1 shows the correspond- }_}8_4 ?gégg
ing performance level y and the tradeoff between the sector-bound 0599 2550
constraint and the achieved performance. Because the linearized 0.99 .00
model at one of the gridding points is unstable, the synthesis condi-
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Fig. 4 Open-loop interconnection for LPV control design.
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Fig. 5 Saturation control of F-16 dynamics with and without LTI antiwindup compensator.
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nominal performance of 8.0. Therefore the controlled performance
will be sacrificed in order to achieve a guaranteed stability result.

D. Nonlinear Simulations

The LPV nominal controller K, and antiwindup compensator
AW, are tested first at one designed flight condition, which is a
trimmed flight at V = 160 ft/s and o« = 35 deg. The magnitude limits
of actuators are enforced during the nonlinear simulation. A flight-
path doublet input with magnitude +2 deg is used to demonstrate
the performance of the antiwindup compensator. Both the nominal
controller and antiwindup compensator are fixed LTI controllers for
the given flight condition derived from the LPV controllers K, and
AW,. The responses of the nonlinear system are shown in Fig. 5,
where the solid line is the trajectory with the antiwindup compen-
sator and the dashed line is the trajectory without the antiwindup
compensator and controlled only by the nominal controller. The
dotted line in Fig. 5a represents the flight-path angle response of
the ideal model. It is observed that the performance without the an-
tiwindup compensator becomes worse around ¢ = 15 s because of
elevator saturation. However, the insertion of the antiwindup com-
pensator quickly overcomes the saturation and greatly improves the
tracking performance.

Another test condition is selected at V = 200 ft/s and « =22 deg,
whichis notadesigned flight condition, and so both the nominal con-
troller and antiwindup compensator are not fixed LTI controllers but
varying in time. However, the computation time will be increased
greatly if the controllers are constructed online according to the
current parameter value. To reduce computational cost, a relatively
coarse gridding parameter space P is used for synthesis, and then
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K, and AW, are constructed off-line at finer gridding points and
saved as look-up tables. In our study, 10 points are used for synthesis
as shown in Fig. 3 and 45 points for constructing look-up tables of
K, and AW,. When doing simulations, the nominal controller and
antiwindup compensator gains are calculated using linear interpo-
lation at the current values of the scheduling parameters between
the grid point solutions.

Note that the nominal controller K, is designed for a set of lin-
earized plant models at the gridding points, so that the output of K,
is the control deviation from the nominal control maintaining trim
condition, and the actual control input to the nonlinear plant should
be the summation of both terms. When K, is parameter varying in
simulations, the instant nominal control inputs should be determined
at each time. This can be done by building up another look-up table
of nominal control inputs at finer gridding points beforehand and
interpolating in real time according to the current parameter values.

For the flight condition just listed, a flight-path doublet input with
magnitude +4 deg is used. The simulation results have confirmed
that the trajectory of parameters evolves about half of the param-
eter space. In this case, the system might not achieve the desired
performance, even maintain stability by using a single LTI anti-
windup compensator. Instead, it is crucial to use LPV nominal con-
trol and LPV antiwindup compensation to achieve good controlled
performance. It is also shown that the variations of the schedul-
ing parameters do not exceed the assumed limits: |V | <20 ft/s
and |a| <10 deg/s, which are used in the LPV control synthe-
sis stage. Moreover, the sector bound constraint on control input
u; < 1000u™ is satisfied over the entire simulation time. Figure 6
shows the aircraft response with an LPV antiwindup compensator,
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Fig. 6 Nonlinear doublet response with LPV antiwindup compensator.
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and the dotted line in Fig. 6a is the ideal flight-path angle response.
It is observed that the LPV antiwindup compensator achieves the
desired performance objective. However, when the antiwindup com-
pensator is unused, both the elevator and the throttle are saturated
severely and the system goes unstable. For clarity purpose, the re-
sponse without LPV antiwindup compensator will not be shown in
Fig. 6. Note that the variations of elevator angle and throttle position
in this case study might go beyond the typical rate saturation limits,
and thus are not realistic for implementation.

E. Comparison with Thrust Vectoring Control

Unconventional control effectors like thrust vectoring are another
way to enhance maneuverability of the modern aircraft at and be-
yond the stall angle of attack. To compare with the saturation control
scheme using an antiwindup compensator, a simple thrust vectoring
model is added to the previous nonlinear F-16 model to provide addi-
tional longitudinal axis control power. For simplicity, there are only
thrust components along x and z body axes. A detailed description
of the thrust vectoring model can be found in Ref. 23.

Now the input variables are elevator deflection §, and pitch
thrust vectoring nozzle deflection &y, whose position limit is
—17 deg < 8,y < 17 deg. Because the state variable pow is not re-
lated to either input in the linearized model, it is neglected and the
number of states is reduced to four. The longitudinal linear model
of the F-16 aircraft at a given trim point with throttle and elevator as
controls and that with elevator and thrust vectoring as controls are

1)
Xy =Ax;+Bjuy =Ax; + B, |:6thi| an
e

flight path angle vy (deg)

35 40 45 50

@
(=2}

angle of attack a (deg)
w
=N

32
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28
26 . . I . . . . . .
0 5 10 15 20 25 30 35 40 45 50
time (s)
b) Angle of attack

/\:2 = AzXz + Boup = A2X2 + B, |:8§Wi| (]8)
B
where the states x; include velocity V', angle of attack «, pitch rate
q, and pitch angle 6.

There are usually two methods to generate thrust vector com-
mands, daisy-chain®"?* and ganged control methods.'?*3 For both
methods, a controller is designed first based on the generalized con-
trol, and the real control inputs are then generated using a control se-
lector. The former approach commands thrust vectoring only when
the conventional aerodynamic control surfaces are ineffective, that
is, they are unable to generate the necessary forces and moments re-
quired for commanded maneuvers. However, it is difficult to define
the generalized control for high-order systems. The basic idea of
the latter approach is to redefine the control contribution to the state
dynamics equation with different weights, and the thrust vector-
ing always works in flight control. The disadvantage of the ganged
control scheme is that it cannot precisely determine the weights of
different controls.

The control allocation method used in this research is different
from those two approaches because the generalized control to de-
sign the controller is not used. The aircraft model with conventional
control effectors is used in the stage of controller design, and the
designed controller is considered as the nominal controller K,. A
control allocation function is then implemented in the nonlinear sim-
ulation, and thrust vectoring is commanded only when the elevator
undergoes saturation. So, the thrust vectoring control is not used
for control design and only used for control implementation. This
control allocation method avoids defining the generalized control
and setting the weights for different control effectors.
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Fig. 7 Nonlinear doublet response with thrust vectoring.
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In the linearized model with conventional control effectors (17),
the state variable pow is only related to the throttle, which has no
relation with the four other states. For simplicity in describing the
control allocation scheme, the first four states with only elevator
deflection are considered in Eq. (17). So the states and A matrix of
the two linearized models are the same:

X = Ax + Bfu] = Ax + B[S,

Spty
szx+Bzu2=Ax+Bz[§‘] 19)

e

where B represents the simplified input matrix and §7 is the elevator
deflection. Ideally, we would like the actual control

B, [Spw]
8e
to provide control effect equivalent to that of the artificial control
B{§7. Then the practical thrust vectoring and elevator angle can be

obtained by solving the following optimization problem when the
elevator is saturated:

min | Byuy — Bjui |, (20)

X,
9p;i

AL(p, D)Xa(p) + Xa(P)Aa(p, )+ Y i

i=1
B{ (0 Xa(p)+ W (p)KCoulp, p)
B 4(p)Xa(p)
Cralp, p)

subject to:
—17+ SSW - oty - 17 + Sgw
—25+48% | T [ 6 | T [25+8°
where 8),, and 80 are equilibrium inputs at trim condition.

To compare the control effect of the antiwindup compensator and
thrust vectoring, a £2 deg flight-path doublet is commanded at the
flight condition V = 160 ft/s and o = 35 deg, same as in Fig. 5. The
solid line in Fig. 7 represents the response of the closed-loop system
with thrust vectoring. Similarly, the dotted line in Fig. 7 is the ideal
trajectory of the flight-path angle. A comparison between the solid
responses in Figs. 5 and 7 illustrates that the antiwindup control

achieves better tracking performance than thrust vectoring control
scheme.

IV. Conclusion

The goal of flight control in the high-angle-of-attack region is
to maintain aircraft stability with acceptable flight qualities. How-
ever, the saturation of the conventional aerodynamic control surfaces
presents many challenges to the control designers, for example, ac-
tuator saturation is an important issue to near-stall and poststall
flight conditions. Without cost/hardware concerns, unconventional
actuators such as thrust vectoring are usually suggested to compen-
sate the conventional aerodynamic control surfaces. However, the
incorporation of additional thrust vectoring nozzle could complicate
the design of flight control laws in the poststall regime. The anti-
windup method provides an alternative approach to handle control
saturation. Applying antiwindup control scheme to flight control
is promising because no additional actuator is needed to compen-
sate control authority. The implementation of antiwindup controllers
could be done by simply modifying flight control software.

Xa(p)Boa(p) +Cl4(p, PIKW (p)

An antiwindup control scheme for LPV systems has been de-
veloped in this research. The extension of the antiwindup control
idea to LPV systems provides a practical approach for nonlinear
flight dynamics in the presence of actuator saturation. Because of
the special structure of the antiwindup control scheme, the LPV
antiwindup control synthesis condition is solvable by LMI opti-
mizations. The LPV antiwindup compensation has been applied
to an F-16 aircraft and compared with the thrust vectoring control
scheme. By augmenting the nominal longitudinal autopilot with an
antiwindup compensator, it has been shown through nonlinear simu-
lation that the F-16 aircraft maintains stability and adequate control
performance in case of actuator saturation, whereas the performance
achieved by the thrust vectoring control scheme is undesirable when
a large maneuvering operation is commanded.

Appendix: Proof of Main Results

Theorem 1

Proof: Consider a Lyapunov function V (x) = xT X (p)x for the
closed-loop system T, then a sufficient condition for the exponential
stability and performance can be established from the inequality

V+A/p)ele—ydid+2g"WEKu—¢q) <0

using the S procedure. Note that it is equivalent to

Xa(P)Bra(p)  C{ (o, p)

W (0)K Do (p) + Dy « (DKW (p) —2W (p) W (p)K Dora(p) DX (p) | <O
DI 4(0KW (p) —ylI

D, a(p)

Dio,a1(p0) Dy1.a(p) -yl

(A1)

where the closed-loop state-space data are as follows:

Aa(p, p)  Boa(p) Bia(p)
Coa(p, ) Dooa(p) Dora(p)
Cra(p, ) Dia(p) Dira(p)

Ap,p)  Bolp) Bi(p) HT (p)
Co(p)  Doo(p) Dor(p) | + | HY (p)

Ci(p) Di(p) Du(p) Hi (o)
Aaw (05 ) Baw(p)
[caw(p,m Daw<p)} GG Gl
A(p, p) 0| Bo(p) | Bi(p) 0 By(p)
_ 0 0 o 0 N I 0
T | Colp) O] 0 |Dpi(p) 0 Dgy(p)
Ci(p)  0|Dio(p)|D11(p) 0 Di(p)
Aaw(p,é) Baw(p) | |0 1‘0‘0 (A2)
Caw(p,0) Daw(p)||0 010

Denote

Aaw(p, P) Baw(p):|

0.0 = [caw@, ) Da(p)

and V (p) = W~!(p). Inequality (21) can be rewritten as follows:

W(p, p)+H (0)Op, p)G+G" O (p, YH(p) <0 (A3)
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with where M(p)NT(p)=1—R(p)S(p). According to elimination
s lemma,?® inequality (A3) is equivalent to
\T . . 8chl
Alp, 0 Xa(p) + Xa(0)A(p, £+ Y _ i
= L ()W (p. )Ni(p) <0 NEW(p. pING <0 (Ad)
W(p, p) = Bi (p)Xa(p) + W ()K Co(p) " ’ ’ g
T
Bl (0)Xa(p) where Ay and Ny expand the null spaces of matrices H and G,
Ci(p) which are
Xa(0)Bo(p) +C5 (KW (p)  Xa(p)Bi(p)  Cl(p) Ni(p) = diag{ X" (0), W' (), I, 1}
—2W(p) W (0)K Doi(p)  Diy(p)
r r I 0 0
D, (0)KW (p) -yl Dy, (p) 0 0 0
D D —yl
10(p) 1(p) Y 0 0 0
H(p) = [Hi(0)Xa(p) Ha(@)KW(p) 0 Ha(p)] “K'BL(p) —K'DI,(p) 0
G=1G1 G G 0 0 0 U
Partition the matrix X, compatibly to the states of an interconnected 0 I 0
system G, and antiwindup compensator AW, as n =n, +n; and
Naw, and let 7 0 0 0
S(p)  N(p) 07 00
Xa(p)=| ¢
N'(p) ? N = 00 00
1o 0 0 0
Riu(p)  Ria(p)
» R(p) M(p) , M(p) 001710
Xa (0) = My 0 | T Ri,(p)  Rx(p) 00 0 I
M7 (p) ‘ ? Through lengthy algebraic manipulations, it can be shown that
[ RAT + AR T
. R (VBI+KCoR)' B, RC! 1 0 0
I 0] =B,K~"|0[0 _pra_pi 0 0 0
TNy = |0 0—D,uk~'l0/1 = x| —K~'BT, —K~'DT, 0
0 0 0 Ilo VBI + KCoR -2V KDy VDI, 0 0 i
B{ Dg]K -yl D, 0 1 0
L CIR D]()V D11 —)/I .
— T —
Ri1A, + ApRy RuCT,
— . dRy -1 1\ pT -1 —I\pT Bpi
_ Zp,.a_p +2B,K~'V(I - KB, +2B, K~V (I — KD,
i=1 !
= <0
'V — K-YBT ! D
Cy Ry +2D,nK™ - K-
p1ikn p12 P2 +2Dp12K_'V(I _ K_I)D;n pll
L BPTl D,T,Il —y1 |
[ SA+ATS 7]
1 000l0l0 +im§ SBy+CyKW  SB,  CT 1 000
0 1/0/ojo = 0 1 00
T
NG WNg = x10 0 0 0
0 001101 BI's+WKC, —2W WKDy DI 00 7 0
0 0(0]0|1
BTS DLKW —yl D, 00017
L C, Dy Dy -yl
SA+ATS+2,O-§ sB, CT
=1 13,01' '
= = <0
B{'S -yl Dj
C Dy =yl

which are the same as conditions (8) and (9), respectively.
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. ops . —1 .
. Cnven the definition of matrices X and X", the coupling con- ZTXgAaZy ZTXaBoa ZTXaBia
dition between R and S would be
Co.aZ, Doo.c1 Doy a1
R I . . .
) >0, rank[R(p) = 57 (0)] < Gzt Doa  Dua
I S(p)
for all p € P. This is equivalent to the third LMI because only R;; SA 0 SBy | SB;
is constrained. Q.E.D. H'A HTARH|HT B, H" B,
Theorem 2 Co CoRH | Dy | Do
Proof: The derivation of the antiwindup controller formula basi- G CiRH | Dy | D

cally follows the procedure outlined in Ref. 12. Define

I RH S H b 07
Z, = o MTHI Zy = NT 0 N 0 Bp |:A.dw Baw] [o L, 0‘0}
0 1 Cuw Dull0 0]1]0
Then it can be shown that X Z; = Z,. Also we have the following 0 Dpn
congruent transformation:
where
S H « R
Z'X47, = . [Aaw BaW:| _ |:SARH O]
éaw baw O 0
T
ds ds dNT
m (RE +MT) H n N SB Aw Buow|[MTH 0
71y 0 10 M)[Cu Du)| 0 1
dr . ds dNT +dR o . : :
H" (R m +M a —-H d—H Multiply diag{Z; , 1, I, I} from the left-hand side and its conjugate
! ! ! transpose from the right-hand side of Eq. (A3) and we get
— s a5 -
SA+ATS + Oi — * * % *
. ds dNT —~ . R A
HTA+A§W+HT<R5 +M7> HT(AR+RAT - Zp,-a—p>H+B,,zcaw+cZwB,fz * x %
i=1 !
BLS+BL +WKC, (B + WKCoR)H + DI, BL, + WKC,y WK Dy + DLKW —2W *
BI'S B'H DLKW —yl
L CI C]RH"_D/JIZéaw D10+Dplzbaw Dl] —)/1_
<0
(AS)
By Schur complement, it is equivalent to
. 0S
SA+A"TS i —
+ATS + ;p o %
X ds dNT —~ . OR A A
T T T T T . T T
H'A+ Al +H <RE + MT) H (AR +RAT — ;pi ap,»>H + BCu + CL B,
SBy+ By + CIKW SB, cr
+ . . A Rt
H"(B{ + WKCoR) + BypDay +CLKW H'By (CiRH + Dy;Cay)"
BIS+ Bl +WKCy (B +WKCoR)H + DTy Bl + WKC,,
X BTS BTH <0 (A6)

C Ci\RH + Dp2Cy
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Clearly, the lower (3 x 3) matrix of inequality (A5) must be nega-
tive definite; this determines the feasible D,y . Let the (2, 1) element
be equal to zeros and one can solve for Agy,. This also leads to decou-
pled LMIs from inequality (A6). Then B, C,, terms can be solved
from the (1, 1) and (2, 2) elements of the decoupled inequality (A6).
Note that both inequalities have regular solutions.?’

The (1, 1) element of the preceding matrix inequality corresponds
to LMI (9) after elimination of the variables B,, and D,,. It can
also be shown that the (2, 2) element is equivalent to LMI (8) by
eliminating C,y, Daw- Q.E.D.
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